Resistance • Capacitance • Inductance

## RS-CS-LS Series

Economical, indispensable tools for a variety of uses in engineering, design, troubleshooting, or service. These small, rugged substituters can satisfy most requirements.

## Features:

- Direct reading - No fumbling with multiple slide or rotary switches

The IET family of digital substituters uses convenient side-by-side thumbwheel switches. Simply dial in the desired values and use.

- Standard accuracies of $1 \%, 0.1 \%$, and $0.05 \%$ available.
- Broad choice of standard and optional models.

A full line of standard substituters satisfies most requirements.

- Direct readings eliminate potential mistakes that come from rotary or slide-switch boxes.
- For easy value readings, ranges are separated by colorcoded switches and numbers.
- The units are small, rugged, and portable.
- Combination units, such as Resistance and Capacitance Substituter (RCS-500), are available.


## Options:

- Shielded case with grounding post
- Panel mounting
- Protection fuse


Available from $0.01 \Omega$ to 299,999,999.9 $\Omega$ (RS-200 Shown)


CS Series: Digital
Capacitance Substituter
Available from 1 pF to $999.9999 \mu \mathrm{~F}$
(CS-300 Shown)


LS Series: Digital Inductance Available from $1 \mu \mathrm{H}$ to 99.99999 H Substituter (LS-400 Shown)


RC-Box
RCS Series: Digital
Resistance-Capacitance Substituter
es RS and CS units in
(RCS-500 Shown)

## See also:

- Decade box product guide
- LCR meter product guide


# Decade <br> Substituters 

## RS-CS-LS Series

## Standard Models

## RS Series -- Standard Models

| Model | RS-200 | RS-201 | RS-200W | RS-201W | RS-200-2W | RS-201W-2W | RS-RTD | RCS-500 | RCS-502 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Resistance | Precision Resistance | Wide-Range Resistance | Wide-Range Precision Resistance | High-Power Resistance | High-Power WideRange Resistance | RTD <br> Simulator | Resistance/ Capacitance | Precision Resistance/ Capacitance |
| Accuracy* | $\pm(1 \%+25 \mathrm{~m} \Omega)$ | $\pm(0.1 \%+25 \mathrm{~m} \Omega)$ | $\pm(1 \%+36 \mathrm{~m} \Omega)$ | $\pm(0.1 \%+36 \mathrm{~m} \Omega)^{* *}$ | $\pm(1 \%+25 \mathrm{~m} \Omega)$ | $\pm(0.1 \%+36 \mathrm{~m} \Omega)^{* *}$ | $\pm(0.1 \%+25 \mathrm{~m} \Omega)$ | $\begin{gathered} \text { Combines } \\ \text { RS-200 and } \\ \text { CS-300 } \end{gathered}$ | $\begin{aligned} & \text { Combines } \\ & \text { RS-201 and } \\ & \text { CS-301 } \end{aligned}$ |
| Decades |  | 7 |  | 9 | 7 | 9 | 6 |  |  |
| Range | 0 to 9,9 | 999,999 $\Omega$ | 0-99,9 | 99,999.9 $\Omega$ | 0-9,999,999 $\Omega$ | 0-99,999,999.9 $\Omega$ | 0-9,999.99 $\Omega$ |  |  |
| Resolution |  | $1 \Omega$ |  | . $1 \Omega$ | $1 \Omega$ | $0.1 \Omega$ | $0.01 \Omega$ |  |  |
| Ratings*** | 0.5 W (rising to 2.5 W at step 9) |  |  |  | 2 W (rising to 10 W at step 9) |  | 0.5 W |  |  |
| Residual | $\leq 0.39 \Omega(\leq 0.0$ | 056 ת/decade) | $\leq 0.5 \Omega$ ( $\leq 0.0$ | $056 \Omega /$ decade) | $\leq 0.39 \Omega$ | $\leq 0.5 \Omega$ | $\leq 0.34 \Omega$ |  |  |
| Components | Metal-film resistors; Manganin wire $\leq 0.9 \Omega$ |  |  |  |  |  |  |  |  |
| Mechanical |  | A |  | B | A | B | A | C |  |

## CS Series -- Standard Models

| Model | CS-300 | CS-301 | CS-301L | CS-300H |
| :---: | :---: | :---: | :---: | :---: |
| Type | Capacitance | Precision Capacitance | Precision, Low Capacitance | High Capacitance |
| Accuracy* | $\pm(4 \%+3 \mathrm{pF})$ | $\begin{aligned} & \hline<10 \mu \mathrm{~F}: \pm(1 \%+3 \mathrm{pF}) \\ & \geq 10 \mu \mathrm{~F}: \pm(4 \%+3 \mathrm{pF}) \\ & \hline \end{aligned}$ | $\pm(1 \%+3 \mathrm{pF})$ | $\begin{gathered} <100 \mu \mathrm{~F}: \pm(4 \%+3 \mathrm{pF}) \\ \geq 100 \mu \mathrm{~F}: \pm 6 \% \\ \hline \end{gathered}$ |
| Decades | 6 |  | 7 |  |
| Range | 0 to $99.9999 \mu \mathrm{~F}$ |  | 0-9.999 $999 \mu \mathrm{~F}$ | 0-999.999 $9 \mu \mathrm{~F}$ |
| Resolution | 100 pF |  | 1 pF | 100 pF |
| Ratings*** | $100 \mathrm{~V}(25 \mathrm{~V}$ for $10-100 \mu \mathrm{~F})$ |  | 100 V | $\begin{gathered} 100 \mathrm{~V} \\ (25 \mathrm{~V} \text { for } 10-1000 \mu \mathrm{~F}) \\ \hline \end{gathered}$ |
| Residual | $\leq 42 \mathrm{pF}$ ( $\leq 7 \mathrm{pF} /$ decade) |  | $\leq 49 \mathrm{pF}$ ( $\leq 7 \mathrm{pF} /$ decade) |  |
| Components | $1-900 \mathrm{pF}$ : mica $0.001-0.9 \mu \mathrm{~F}$ : Polypropylene <br> $1-9 \mu \mathrm{~F}$ : Polyester $10-900 \mu \mathrm{~F}$ : Tantalum |  |  |  |
| Test Cond. | $1 \mathrm{kHz} ; 1 \mathrm{Vrms}$; for $\geq 10 \mu \mathrm{~F}$ : 120 Hz , series model; $23^{\circ} \mathrm{C}$ |  |  |  |
| Mechanical | B |  |  |  |

## *Accuracy:

After subtraction of residual impedance
Traceable to SI
**Accuracy for RS-201W \& RS-201W-2W:
$<10 \mathrm{M}$ : as shown above
$\geq 10 \mathrm{M} \Omega$ : 0.2\%
***Rating:
Subject to switch maximum dielectric strength of 750 Vdc peak
or 550 Vrms, switching

## LS Series -- Standard Models

| Model | LS-400A | LS-400 | LS-400L |
| :--- | :---: | :---: | :---: |
| Type | Inductance | High <br> Inductance | Low <br> Inductance |
| Accuracy* | $\pm(2 \%+0.5 \mu \mathrm{H})$ |  |  |
| Decades | 3 | 4 | 6 |
| Range | 0 to 999 mH | $0-9.999 \mathrm{H}$ | $0-999.999 \mathrm{mH}$ |
| Resolution | 1 mH | 1 mH | $1 \mu \mathrm{H}$ |
| Frequency <br> Response | See http://www.ietlabs.com/ls-series-inductance-decade-box.htmI |  |  |
| Residual | $\leq 0.17 \Omega ; \leq 1 \mu \mathrm{H}$ <br> $(\leq 0.056 \Omega /$ decade $)$ | $\leq 0.23 \Omega ; \leq 1 \mu \mathrm{H}$ <br> $(\leq 0.056 \Omega /$ decade $)$ | $\leq 0.34 \Omega ; \leq 1.5 \mu \mathrm{H}$ <br> $(\leq 0.056 \Omega /$ decade $)$ |
| Components | Toroidal Inductors |  |  |
| Test Cond. | $1 \mathrm{kHz}, 0.1 \mathrm{Vrms} ;$ series model; $23^{\circ} \mathrm{C}$ |  |  |
| Mechanical | B |  |  |

## Switches:

10-position thumbwheel switches
make-before-break
Maximum switch voltage:
750 Vdc peak or 550 Vrms , switching
Mechanical:
A: $8.1 \times 7.9 \times 5.6 \mathrm{~cm} ; 184 \mathrm{~g}\left(3.2^{\prime \prime} \times 3.1^{\prime \prime} \times 2.2^{\prime \prime} ; 6.5 \mathrm{oz}\right)$
B: $12.1 \times 7.9 \times 5.6 \mathrm{~cm} ; 235 \mathrm{~g}\left(4.7^{\prime \prime} \times 3.1^{\prime \prime} \times 2.2^{\prime \prime} ; 8.3 \mathrm{oz}\right)$
C: $18.8 \times 11.6 \times 6 \mathrm{~cm} ; 410 \mathrm{~g}$ (7.4" x 4.3" x 2.4"; 14 oz )

## Optional Models



