Model 7000 ESD/Latch-up Test System

Pulse and ESD Technology

1024 pins ESD/Latch-up Tester Model 7000-1024 Specification and Technical Information

Tokyo Electronics Trading Co., Ltd 8-26, 4 Chome, Nishiki-cho, Tachikawa-shi Tokyo 190-0022 Japan Tel:+81-42-548-8011 Fax:+81-42-548-8013 URL : www.tet.co.jp

1. Specifications

1.1 ESD Simulation

- Pin Selection Method
 E & EL type : Automatic by 2 axes robot
 L type : Manual
- High Voltage
 E & EL type : ±1000/4500/(8000)V, 1%±5V
 L type : ±1000V, 1%±5V
- CR Unit : HBM, MM and others
- ESD Repetition : 1 ~100 times
- ESD Period : 300ms ~ 5s, 100ms increment
- Charge removal : 3 ways selected by program
- 1.2 DC measurement
- V_{cc1} Power Supply(Used as pulsed power supply, as well) Voltage Range : ±30V, 50mV increments Current Measurement : ESD Test : ±500mA, 100nA(Min.) resolution Latch-up Test : ±1000mA, 1mA(Min.) resolution Current Limiter : 50mA ~ 1000mA, 10mA increments Pulse Width : $0.1 \text{ms} \sim 5 \text{s}$ $T_r, T_f: 3\mu s/V$ Latch-up definition current : $I_{CCQ} \times N + Offset$ I_{CCQ} : Quiescent current Ν : 1~100 Offset: 5mA ~ 1000mA. 5mA increments DUT connection : Automated $V_{cc2 \sim 4}$ (DC Power Supply) Voltage Range : ±15V, 50mV increments
- Current Measurement : Same as V_{cc1} Current Limiter : Same as V_{cc1} Latch-up definition current : Same as V_{cc1} DUT connection : Automated
- VF/IM(Voltage Force/Current Measurement) Voltage Range : ±15V, 10mV increments Current Measurement : 100mA, 10nA(Min.) resolution
 - Current Range : 5 Auto-ranges Averaging : 1, 2, 4, 8, 16, 32 times DUT Connection : Automated
- DVM(Digital Voltmeter)
 Voltage Measurement : ±30V, 10mV (Min.) resolution
 Input impedance : Over 10MΩ

DUT Connection : Automated 1.3 Latch-up Trigger Source • i_p(Current Pulse) Generator Current Range : ±1000mA, 1mA(Min.) increments Voltage Measurement : ±30V, 50mV resolution Clamp Voltage : $1 \sim 30V$, 0.1V increments Pulse Width : 0.1ms ~ 1s, 0.1ms increments T_r , T_f : about 10µs/200mA Repetition : $1 \sim 100$ times Period : 100ms ~ 10s, 100ms increment DUT Connection : Automated v_p(Voltage Pulse) Generator Voltage Range : $\pm 30V$, 50mV increments Current Measurement : ±1000mA, 1mA(Min.) resolution Current Limiter : 50mA ~ 1000mA, 10mA increments Pulse Width : 0.2ms ~ 5s, 0.2ms increments T_r, T_f: about 50µs/10V Repetition : $1 \sim 100$ times Period : 100ms ~ 10s, 100ms increment DUT Connection : Automated 1.4 DUT Stabilization Pull-up/down Connected to $V_{cc1\sim\!\!4}$, GND, VUD1~VUD3 or maxLogicHi/minLogicLo via 10kΩ. DUT Connection : Automated Multi-channel Control Power Supply Channels: 4 Voltage Range : ±30V, Potentiometer control Voltage Display : 3.5 digits LED with polarity Current: 10mA Current Measurement : 3.5 digits LED with polarity 4 Channels Clock Generator Period, Frequency: CH1: 10k, 100k, 1MHz selectable CH2: Invert of CH1 CH3 : $1\mu s \sim 100 \ \mu s$, $1\mu s$ increments CH4 : $1\mu s \sim 100 \ \mu s$, $1\mu s$ increments Output Level : 1V ~ 15V, 0.1V increments DUT Connection : Manually by jumper leads

 16 Channels Pattern Generator Channels : 1 Clock Channel 16 Pattern Channels

- Clock : 1μs ~ 100 μs, 1μs increments or 100Mz (optional)
 Pattern Timing : Clock Synchronous
 Pattern Depth : 1024 vectors
 Pattern Group : 2(A and B)
 Output Pattern :Only B or B × n after A
 Output Level : 1V ~ 15V, 0.1V increments
 DUT Connection : Manually by jumper leads
- 1.5 Other Options Temperature controlled Oven : Room temp., +25° ~ 125°C
- Emission Microscope Digital Oscilloscope 1.6 Dimension, Power Requirement Main Body Size : Approx. 1100(W), 900(H),
 - Main Body Size : Approx. 1100(W), 900(H), 800(D) mm Main Body Weight : Less than 200kg AC Supply : 100V ±10%, 50/60Hz, Single Phase 1.5kVA(MAX.) Ambient Temperature : +10° ~ 40°C (note) : Other AC supply voltage may be ordered as an option.

- 2. Features
 - Up to 1024 pins with full pin combination capability
 - Allows ESD(HBM and MM) and Latch-up Tests
 - Meets JEDEC, MIL, ESD Association and EIAJ standards, as well as future standards
 - Drastic Test Time Reduction
 - True constant current pulse and fast pulsed power supply
 - Stabilizes DUT by pull-up/down and pattern generator
 - Collects detail test results quickly by auto or manual operation
 - Allows temperature coefficient test
 - Minimum path resistance of power supplies
 - Damage detection between tests
 - Discharge between zap(s)
 - Tests multiple DUT, multiple supply DUT and LCD drivers
 - Function test available
 - Low insertion force connectors on DUT board
 - Complete diagnostics and easy maintenance
 - Connectable with Ethernet
 - Allows data manipulation by the data base program

3. General

Higher integration and higher speed are increasingly developed day by day in the semiconductor market. It is especially drastic in memory, microprocessor, ASIC and LCD driver. Therefore, the reliability evaluation against ESD(Electro-Static Discharge) and Latch-up of these semiconductor devices is becoming more important. Model 7000 series targets all of these tests by a single system. It allows latch-up test of CMOS LSI with multiple power supply.

The Model 7000 series is a states of the arts reliability evaluation system that allows fully automated ESD test and Latch-up test up to 1024 pin devices. 3 types are available for the series.

Type E : ESD test only

Type L: Latch-up test only

Type EL : Both ESD and Latch-up test

• ESD test

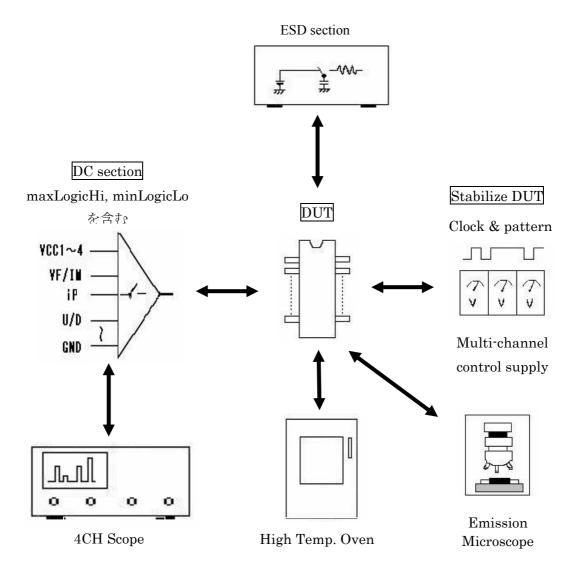
ESD Pulse Generator (EPG) unit is attached to a 2 axes robot. The ESD pulse generated in the unit zaps DUT and returns to the unit with the minimum path length so that HBM, MM or other waveform specification may be installed. Each EPG unit includes 4 C/R and the system may have up to 4 robots (256 pins/robot). This means high speed zapping (more than 10 times faster than the predecessor) is available, maintaining zapping period to the same pin enough long as specified by the standard.

Though the Model 7000 adopts robots to define zapped pin, the return or common pin can be programmed

because relay matrix is installed for it. This allows full pin combination ESD test requested by the standards. Degradation or breakage is detected by the measurement function included in the DC section.

- V-I curve variation(% method) before and after zapping
- against DC specification (M/M method) after zapping
- V-I curve is available for every pin and ESD voltage

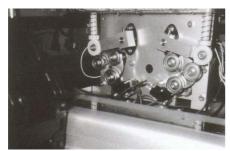
Latch-up test

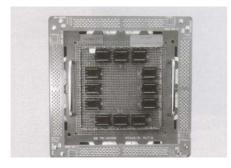

For latch-up test using trigger source such as current pulse (i_p) , voltage pulse (v_p) or supply pulse (V_p) , only DC section is used. For latch-up test using trigger source such as ESD pulse or transient pulse, ESD section is used as well.

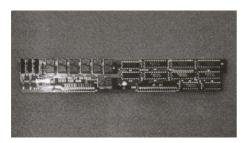
Except the V_p latch-up test, high speed successive approximation procedures are available, to reduce test time. Because latch-up detection is done by comparison between the quiescent $I_{cc}(I_{ccq})$ and I_{cc} after the trigger or by the absolute value of I_{cc} after the trigger, it is important to stabilize the DUT. For this purpose, Model 7000 allows to pull-up or pull-down every input pin, or supply clock or digital pattern by the stabilization section. High temperature oven enables temperature coefficient measurement of latch-up.


Digitizing oscilloscope will give the waveform information how latch-up proceed.

Emission microscope gives visual data and hard copy of on-chip heat generation because of latch-up.


Block Diagram


Position Control by miniature linear guide


DUT Ejection Mechanism

Multiple Devices DUT Board

Pin Electronics

4. ESD Test (Model 7000E, EL type)

4.1 General

Up to 4 EPG(ESD Pulse Generator) units can be flexibly controlled. Time spent for zapping is reduced down to less than 1/10 of predecessor.

- High speed zapping
- Double buffer mechanism
- 4 generators/unit
- 4 units/system

Easy ejection of 512 pins DUT board

- Miss-feed Protection
- 2 sec to eject
- 60kg of ejection force
- Parallel feed/eject
- Space grade connectors adopted
- High reliability, low contact resistance and low insertion force
- Can be used in the oven
- Can be used for both ESD and Latch-up test
- Common pin connection is done automatically or manually
- High Speed ESD mode available
- HBM/MM Mixed zapping to multiple DUT

One small PC board per pin

- Reliable 3A relay for V_{cc} and GND
- Very small relay for pull-up/down
- Low impedance path
- Easy maintenance

It was a common understanding that ESD test took long time. Model 7000 challenged the wall, and this is it. Multiple robot and multiple ESD generator in the unit enabled reduction of total time spent for zapping down to less than 1/10 compared to the predecessors.

ESD test standard have been up-graded every 2 or 3 years including waveform and pin combination specifications. Because Model 7000 adopted C/R unit to specify ESD waveform, most future waveform can be generated by modifying the C/R unit.

DC section is redesigned to improve the precision and speed.

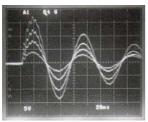
4.2 Features

- Meets EIAJ, MIL, ESD and JEDEC standards
- High speed zapping and DC measurement
- Programmable common(return) pins
- 3 discharge methods

- Up to 8kV ESD voltage (Less than 512 pins)
- Easy replacement of C/R units
- High speed and high precision DC measurement
- Flexible test procedure

4.3 Any ESD Waveform

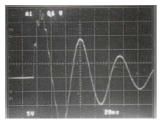
By developing a C/R unit, any ESD waveform may be generated by the Model 7000 so that a variety of field failure modes may be simulated, especially in Machine Model.



E : High Voltage C : Capacitance

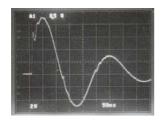
- R : Discharge resistance
- L : Discharge inductance
- R_D : DUT resistance(0 Ω)

By deciding the L,C,R values, any waveform may be generated, and any failure mode is simulated.


A. ESD and JEDEC waveform and linearity

)pF, L=0.75μI	H, R=10Ω
ips(A)	tm(ns)
3.4	76
6.5	76
10	76
13	76
	3.4 6.5 10

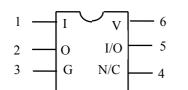
Failure of oxide and junction are mainly simulated.


B. High stress waveform(customer dependent)

C=20	00pF, L=0.3µH,	R=10Ω
E(V)	ips(A)	tm(ns)
400	10	54

Oxide failure is mainly simulated.

C. Thermal stress waveform(customer dependent)



C=200pF, L=	7μH, R=30Ω	
E(V)	ips(A)	tm(ns)
400	1.8	760

Junction failure is mainly simulated.

4.4 Pin combination test

Common pins can be programmed as TET predecessors. In this method, common pins are automatically changed in sequence. To activate common pin, just enter check (V) in the selection column.

I : Input O : Output I/O : Input/Output

- NC : No Connection
 - : Supply Pin
- G : Ground Pin

V

Zap sequence	Zap pin	Common pin	Selection	Description
1	1			7
2	2	3	v	Zapped between signal pin,
3	5	3	v	supply pin
4	6			and ground (common) pin
5	1			
6	2	6		Zapped between signal pin,
7	3	6		ground pin and supply pin
8	5			and suppry pin
9	1	2,5		Zannad hatwaan signal nin
10	2	5,1	v	Zapped between signal pin and signal pin
11	5	1,2		

4.5 3 modes of DUT discharge

It was found that semiconductor device's endurance against ESD depends on DUT discharge method during zapping process. To make clear the dependence, Model 7000 allows 3 modes of discharge. ESD timings are kept as programmed.

Mode 1: Discharge is performed when zapping all selected pins or pin combinations are done.

Mode 2: Discharge is performed when zapping each pin or pin combination is done.

Mode 3: Discharge is performed after every zapping. If 3 zapping is programmed as 3 times at an ESD level, discharge is done 3 times.

4.6 Breakage detection as well as degradation process measurement

Percent method of DC measurement enables device breakage by ESD stress.

Category method of DC measurement enables degradation process of the DUT by ESD stress.

A Test result example of percent method

Next Table is an example of print out result. Upper rows are the currents before any zap, and lower rows are the currents at breakage. Breakage is detected by the percentage current change from the current before zap.

₽_	Dev 1	Dev 2		Dev 3	Dev	4	Dev 5	Dev	6	Dev 7	Dev 8	3 D	ev 9	Dev 10	J
Pin #	Name	DC	ESD	Table	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Test 7	Test 8	Test 9	Test 10	1
		SRC	Pulse	A Table	-500mV	-400mV	-300mV	-200mV	-100mV	100mV	200mV	300mV	400mV	500mV	
		1.00		B Table	500mV	400mV	300mV	200mV	100mV	-100mV	-200mV	-300mV	-400mV	-500mV	1
				C Table											2
				D Table											1
1	Input	UD1	#-450	Vf-A	-330nA	0A	0A	0A	0A	0A	0A	0A	33nA	1.2uA	Ι
1 1	2000 				×-42uA	×-34uA	×-26uA	×-18uA	×-9.5uA	*9.7uA	×20uA	*29uA	*38uA	×48uA	T
2	Imput	UD1	#-750	Vf-A	-270nA	0A	0A	0A	0A	0A	0A	0A	39nA	1.3uA	T
1 11				Í Í Í	×-450nA	-15nA	0A	0A	0A	0A	0A	0A	39nA	1.3uA	1
3	Output		#-850	Vf-B	6.6uA	160nA	0A	0A	0A	0A	0A	0A	-28nA	-1.5uA	1
1 1					8.3uA	530nA	79nA	14nA	0A	0A	0A	0A	0A	*-13nA	1
4	Output		#-450	Vf-B	6uA	140nA	0A	0A	0A	0A	0A	0A	-26nA	-1.4uA	1
1	88 - 85. 			1	*1.29mA	*1.02mA	×767uA	*514uA	*255uA	*-256uA	×-512uA	×-769uA	*-1.03mA	*-1.28mA	1
5	Input	UD1	#-750	Vf-A	-330nA	0A	0A	0A	0A	0A	0A	0A	44nA	1.3uA	1
())					×-2.78mA	×-2.21mA	×-1.66mA	×-1.11mA	×-548uA	×544uA	×1.1mA	*1.65mA	*2.24mA	*2.79mA	1
6	Input	UD1	#-850	Vf-A	-320nA	0A	0A	0A	0A	0A	0A	0A	42nA	1.2uA	1
	1997) 				×-600nA	-37nA	0A	0A	0A	0A	0A	0A	33nA	1.3uA	1
7		GND													1
						-		-							1
8	Imput	UD1	#-550	Vf-A	-360nA	0A	0A	0A	0A	0A	0A	0A	35nA	1.2uA	1
				200	×-14uA	×-9.5uA	×-6uA	×-3.4uA	*-1.4uA	*1.2uA	*2.4uA	*3.6uA	*4.8uA	*7.3uA	1
9	Input	UD1	#-950	Vf-A	-320nA	0A	0A	0A	0A	0A	0A	0A	37nA	1.2uA	1
					×-480uA	×-382uA	×-280uA	×-184uA	×-91uA	*92uA	*187uA	×288uA	×403uA	*551uA	1
10	Output		#-750	Vf-B	5.9uA	150nA	0A	0A	0A	0A	0A	0A	-29nA	-1.4uA	1
				2 2	*X2.05mA	*X2.05mA	*X2.05mA	*1.57mA-	×794uA	×-787uA	*-1.6mA	*X-2.05mA	*X-2.05mA	*-1.99mA	1
11	Output		#-1100	Vf-B	6.1uA	170nA	0A	0A	0A	0A	0A	0A	-31nA	-1.5uA	1
-	10 AZ				×376uA	×294uA	*221uA	×147uA	*74uA	×-72uA	×-144uA	×-218uA	×-291uA	×-361uA	1
	Imput	UD1	#-850	Vf-A	-250nA	0A	0A	0A	0A	0A	0A	0A	35nA	1.luA	1
12					×-590nA	-50nA	0A	0A	0A	0A	0A	0A	34nA	1.2uA	1
12	- input			1	000 4	0A	0A	0A	0A	0A	0A	0A	32nA	1.2uA	1
	Input	UD1	#-750	Vf-A	-260nA										

B. Test result example of M/M(Min/Max category) method

The table on next page is a test result example of M/M method. From the initial data(before zap) to degrade and breakage process can be listed.

Dev 1	Dev	2	Dev 3	1)ev 4	De	v 5	Dev	6	Dev 7	1)ev 8	De	v 9	Dev 1	0
ESD Pulse	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
	UD1	UD1			UD1	UD1	GND	UD1	UD1			UD1	UD1	Vcc1		
)	Vi-C	Vi-C	Vo-B	Vo-B	Vi-C	Vi-D		Vi-D	ViC	Vo-B	Vo-B	Vi-D	ViC			
0	EAA	EAA	P	P	EAA	EAA		EAA	EAA	P	Р	EAA	EAA			
-50	EAA	EAA	P	P	EAA	EAA		EAA	EAA	P	P	EAA	EAA	<u> </u>		
-150	EAA	EAA	P	P	EAA	EAA		EAA	EAA	P	P	EAA	EAA			_
-250	EAA	EAA	P	P	EAA	EAA		EAA	EAA	P	P	EAA	EAA	<u> </u>	<u> </u>	
	EAA	EAA	P	P	EAA	EAA		EAA	EAA	P	P	EAA	EAA			
	EAA	EAA	P	P	EAA	EAA		EAA	EAA	P	P	EAA	EAA			
	EAA	EAA	P	P	EAA	EAA		EAA	EAA	P	P	EAA	EXA			
	EAA	EAA	P	P	EAA	EAA		EAA	EXA	P	P	EAA				
	EAA	EAA	P	Z	EAA	EXD		EAD		P	P	EAA		<u>. </u>		
	EAA	EXA	P		EAA			EAA		Z	P	EAA				
	EAA		P		EAA			EAA			P	EAD				
-1100	XXX		Z		XXX			EXX			P	EXE				

4.7 Test conditions are easily made on the Windows 2000 OS

Following figure is an example menu to enter the test conditions of the percent(%) method. 2 or 3 sub-menu complete the programming. Once test is started, test process can be monitored by the display such as zap voltage, pin#, measured value, breakage decision, etc.

Printer, hard disk or floppy disk will save the program and/or test results by operator's request. Connection to the communication line is available.

IC Name Mc14001b Pin Pin Table C:\Table\Sys\D14Pin.bdf	14 Mut 8 1 2 V V	য য য য	
FileName : ESD Parameters Timing Charge (Sec) 100m Zap (Sec) 100m Cycle (Sec) 300m Amplitude 1 (M) So Amplitude 2 (M) Title	Breakage Criteria Repetition 3 * Zap Mode Pin Scan ¥ Removal Alter all pins zppd ¥ 1000 * 100 * 2000 * 200 * * 200 * ×	Condition Table Condition : C\Table\Cond\14Pin. Clock : ESD Wave Form Vave Form HBM(SP) Polarity Positive Capacitance : 100FF Resistance : 1.5k ESD Simulation Amplitude 100 Z	tpf Dpen Dpen Cap Com Seq Gnd : COM1 V Vcc1 : COM1 V Vcc2 : None V Vcc3 : None V Vcc4 : None V Ucc4 : None V
Contact Test		Temp/Hmdty: Wafer Number Lot Number:	Execute Test Results

4.8 Plentiful Tests

To meet every need of ESD test in semiconductor market, Model 7000 includes following tests that can be used with multiple device DUT board. High speed zapping is also available for all tests.

	Test Mode	Description
1	ESD simulation	Only zapping performed
2	V/I curve measurement	V/I curves of the DUT are measured
3*	DC measurement	DC parameter of the DUT are measured
4	ESD Test by % method	Combination of 1 and 2. Breakage is detected
		by the current change percentage.
5*	ESD Test by M/M method	Combination of 1 and 3. Degradation and breakage are detected by the DC parameter change.
6*	ESD Test by curve tracer	1 and external curve tracer is used. Operator decide DUT breakage by curve change.
7	Contact Test	Perform DUT contact test.
8	Self Test	System diagnostics

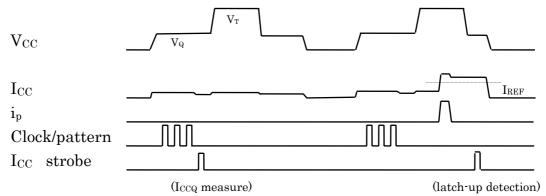
5. Latch-up Test (Model 7000EL, L type)

5.1 General

To get a repeatable test results of latch-up test, following 3 items are important.

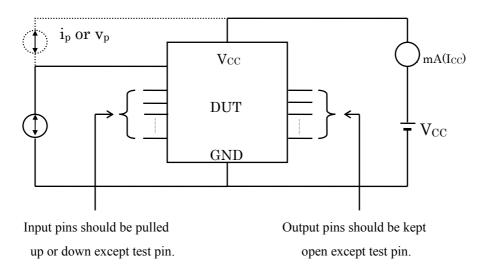
- Stable trigger source
- Low impedance latch-up detection power supply
- Stabilize DUT

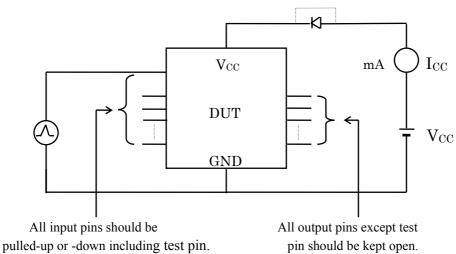
The Model 7000EL or L are designed in considering all above. The system also look at future upgrade of the relating standards.


5.2 Features

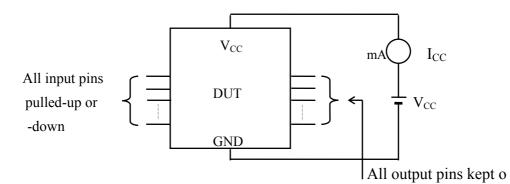
- Meets EIAJ, JEDEC and ESD standard
- Plentiful latch-up trigger source
- Low impedance path and matrix by high current relay
- DUT stabilization by pull-up/down and clock/pattern generator

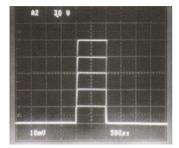
5.3 Basic timing of latch-up test


• Latch-up process measurement


- Detects temperature dependence
- Connection with emission microscope
- Plentiful test program
- Successive approximation high speed test
- Next figure illustrates the test timing of current pulse triggered latch-up test.
- I_{CCQ} (quiescent I_{CC}) is measured after V_Q is applied to the DUT supply pins. I_{CCQ} may be measured after clock and/or pattern are applied to stabilize the DUT, as the figure below.
- Then i_p is applied to the test pin of the DUT. I_{CC} is measured after the programmed delay time. If measured I_{CC} exceeds I_{REF} (= $I_{CCQ} \times N$ + offset value), latch-up is detected and V_{CC} is forced to 0V.

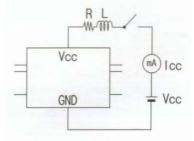
5.4 Latch-up test circuit


Current pulse(i_p) or voltage pulse(v_p) triggered latch-up test

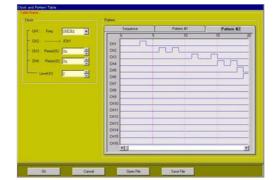


• ESD or transient triggered latch-up test

Power supply pulse(V_P) triggered latch-up test

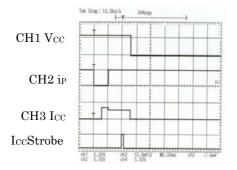


5.5 Clean Current Pulse

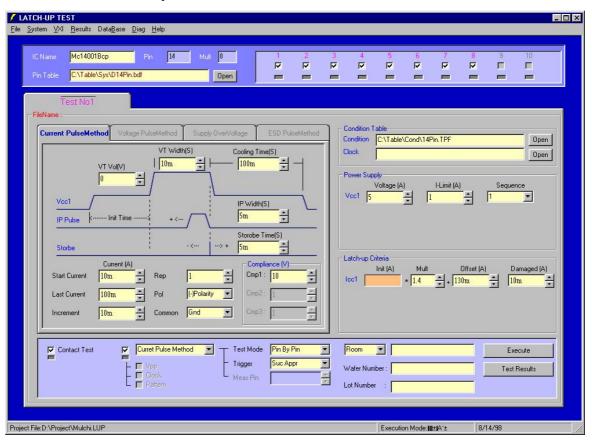


Latch-up repeatability depends on clean trigger source. The current pulse of Model 7000 has less than 5% distortion(overshoot and undershoot) as left picture. Variable t_r/t_f may be ordered as an option. After the trailing edge of the current pulse, input pin is pulled -up or -down without discontinuity, then I_{CC} is measured.

5.6 Low power supply bus impedance


Because latch-up current is usually very high, voltage drop of the supply path causes recovery from latch-up, though once latched-up. This is a source of unstable measurement. To avoid it, Model 7000 uses low contact resistance and high current relay to switch V_{CC} supplies and decreases the impedance of supply path.

5.7 **DUT stabilization**


This window is to edit digital patterns to stabilize a DUT for ESD and latch-up test. Clocks and patterns are programmed by host PC windows. Higher density DUT needs some digital patterns before I_{CC} measurement.

5.8 To monitor latch-up process

The analysis of latch-up process has been difficult because the usual tester gives only digital results. Digitizing scope option stores the latch-up process and waveform information is easily collected as this picture. A-D converter board of PC may take over the scope, though bandwidth is limited. With the optional high temperature oven and emission microscope, further analysis such as temperature coefficient or latch-up location detection are possible.

5.9 Test conditions are easily made on the Windows 2000 OS

This window and a few sub-windows enable to decide latch-up test conditions and test execution. Up to 10 DUTs are automatically tested. Left window accepts i_p parameters such as timings, current, etc., V_{CC} voltage, sequence, latch-up definition. Pull-up, down, clock and pattern for DUT stabilization are programmed on the sub-windows. Input pins connected to clock or pattern are fixed to the level defined by the condition table during I_{CC} measurement.

	Test mode	test pin
1	Current pulse triggered, incremental	I, O, I/O
2	Current pulse triggered, successive approximation	I, O, I/O
3*	Voltage pulse triggered, incremental	I, O, I/O
4*	Voltage pulse triggered, successive approximation	I, O, I/O
5*	ESD pulse triggered, incremental	I, O, I/O,V _{CC}
6*	ESD pulse triggered, successive approximation	I, O, I/O,V _{CC}
7	Supply pulse triggered, incremental	V _{CC}
8*	Transient pulse triggered, incremental	I, O, I/O,V _{CC}
9 [*]	Transient pulse triggered, successive approx.	I, O, I/O,V _{CC}
10^{*}	Punch through current measurement	I, I/O
11*	Temperature coefficient test	
12^{*}	Test with emission microscope	
13	DUT contact test	
14	Self test, Diagnostics	
I : Inpu	t pin O : Output pin I/O : Input/Out	put pin

5.10 Plentiful test modes

V_{CC} : Power Supply Pin GND : Ground pin * : Optional

6. System Configuration

Type E : ESD test

Type EL : Both ESD and Latch-up test

Type L : Latch-up test

6.1 Pin count : 256/512/ 1024 pins

6.2 ESD section

	Function	n	Е	\mathbf{EL}	L
		1kV	Δ	Δ	NA
Type	High Voltage	$4.5 \mathrm{kV}$	0	0	NA
E/EL		8kV	Δ	Δ	NA
Auto Zap	Common pin rela	ay matrix	0	0	NA
Auto		HBM	0	0	NA
Pin selection	EPG unit	MM	0	0	NA
		Others	Δ	Δ	NA
Type E/EL	X,Y axis ro	obot	0	0	NA
Auto Zap	DUT board	$256 ext{ pins}$	Δ	Δ	NA
Auto pin sel.	Loader/unloader	512/1024 pins	0	0	NA
Type L	High voltage	e 1kV	NA	NA	\bigcirc
Auto Zap	MPG unit	MM	NA	NA	\bigcirc
Manual sel.	wir G unit	Others	NA	NA	Δ

6.3 DC section

Functions	Ε	\mathbf{EL}	L
VF/IM	0	0	0
$V_{\rm CC}(V_{\rm P})$	Δ	0	0
V_{CC2} ~ V_{CC4}	Δ	Δ	Δ
DVM	Δ	0	Δ
ip	NA	0	0
Vp	NA	Δ	Δ
VF/IM self test board	0	0	0

6.4 Stabilization section

Functions	Е	EL	L
${ m V}_{ m CTL}(6~{ m channels~control}~{ m power~supply})$	Δ	Δ	Δ
4 channels clock	Δ	Δ	Δ
16 channels pattern	Δ	Δ	Δ
256 channels pattern	Δ	Δ	Δ
Pull-up/down	Δ	0	0

6.5 Other functions

Е	EL	L
NA	Δ	Δ
Δ	Δ	Δ
NA	Δ	Δ
NA	Δ	Δ
	Δ NA	$\begin{array}{c c} \Delta & \Delta \\ \hline NA & \Delta \end{array}$

 \odot : Standard Δ : Optional NA : Not available